2019
Luciano Perdigão Cota, Frederico Gadelha Guimarães, Roberto G. Ribeiro, Ivan R. Meneghini, Fernando Bernardes de Oliveira, Marcone Jamilson Freitas Souza, and Patrick Siarry. 2019. “
An adaptive multi-objective algorithm based on decomposition and large neighborhood search for a green machine scheduling problem.” Swarm and Evolutionary Computation, 51, Pp. 100601.
Publisher's VersionAbstract
Green machine scheduling consists in the allocation of jobs in order to maximize production, in view of the sustainable use of energy. This work addresses the unrelated parallel machine scheduling problem with setup times, with the minimization of the makespan and the total energy consumption. The latter takes into account the power consumption of each machine in different operation modes. We propose multi-objective extensions of the Adaptive Large Neighborhood Search (ALNS) metaheuristic with Learning Automata (LA) to improve the search process and to solve the large scale instances efficiently. ALNS combines ad-hoc destroy and repair (also named removal and insertion) operators and a local search procedure. The LA is used to adapt the selection of insertion and removal operators within the framework of ALNS. Two new algorithms are developed: the MO-ALNS and the MO-ALNS/D. The first algorithm is a direct extension of single objective ALNS by using multi-objective local search. As this method does not offer much control of the diversification of the Pareto front approximation, a second strategy employs the decomposition. approach similar to MOEA/D algorithm. The results show that the MO-ALNS/D algorithm has better performance than MO-ALNS and MOEA/D in all indicators. These findings show that the decomposition strategy is beneficial not only for evolutionary algorithms, but it is indeed an efficient way to extend ALNS to multi-objective problems.
Matheus Araújo de Butinholi, Alexandre Xavier Martins, Paganini Barcellos de Oliveira, and Diego Perdigão Martino. 2019. “
Algoritmo de descida em vizinhança variável aplicado ao problema de cobertura máxima de p-eixos não capacitados com alocação simples.” In LI SBPO - Simpósio Brasileiro de Pesquisa Operacional, 2: Pp. 107798. Limeira, SP.
Publisher's VersionAbstractO presente artigo aborda o problema de cobertura máxima de p-eixos não capacitados com alocação simples (Uncapacitated Single Allocation p-hub Maximal Covering Problem - USApHMCP), que objetiva maximizar a cobertura de um conjunto de nós de uma rede através de p-eixos. Uma heurística baseada na estratégia de busca em descida com vizinhança variável (Variable Neighborhood Descent - VND) foi desenvolvida para o problema. Dois diferentes conjuntos de instâncias, Civil Aeronautics Board (CAB) e Australian Post (AP), são utilizados para avaliar e comparar o desempenho do VND à metaheurística Busca Tabu (Tabu Search - TS) encontrada na literatura. Como resultado, o VND apresentou limites superiores melhores para instâncias de grande porte (AP), bem como um desempenho médio ligeiramente superior em tempo computacional de resolução para as instâncias CAB, de menor porte.
Diego Perdigão Martino, Alexandre Xavier Martins, Paganini Barcellos de Oliveira, and Matheus Araújo de Butinholi. 2019. “
Algoritmo de pesquisa em vizinhança variável aplicado ao problema de orientação de redes fortemente conexas.” In LI SBPO - Simpósio Brasileiro de Pesquisa Operacional, 2: Pp. 107799. Limeira, SP.
Publisher's VersionAbstractA infraestrutura inadequada e o intenso fluxo de pessoas e veı́culos resultam em problemas associados às vias urbanas no mundo. O Problema de Orientação de Redes Fortemente Conexas (Strong Network Orientation Problem – SNOP) é uma alternativa para amenizar esse cenário na medida em que objetiva minimizar a soma das distâncias percorridas a partir de cada ponto de interseção entre vias, tendo em vista os custos associados à rede urbana. Classificado como NP-Difı́cil, algoritmos heurı́sticos são eficazes para atingir soluções de qualidade, uma vez que obter a melhor solução exige grande esforço computacional. Este artigo apresenta o algoritmo de pesquisa em vizinhança variável General Variable Neighborhood Search (GVNS) para a resolução do SNOP, bem como as estratégias utilizadas. Os resultados obtidos indicam que o GVNS é eficiente em tempo e qualidade de solução quando comparado com outras abordagens aproximadas e exata para o problema.
Robson Vieira de Oliveira, Mauricio Cardoso de Souza, and Thiago Augusto Oliveira de Silva. 2019. “
Dimensionamento de lotes com seleção de fornecedores e possibilidades de desconto no custo fixo.” In LI SBPO - Simpósio Brasileiro de Pesquisa Operacional, 2: Pp. 108200. Limeira, SP.
Publisher's VersionAbstract
A natureza delicada das atividades hospitalares e a necessidade de manter altos níveis de serviço exigem uma eficiente gestão dos estoques de medicamentos, uma vez que eles possuem demanda derivada do tratamento de pacientes. Neste contexto, o presente trabalho apresenta uma metodologia para encontrar limites inferiores de um modelo matemático de dimensionamento de lote com seleção de fornecedores em uma farmácia hospitalar. É proposta a implementação da decomposição de Dantzig-Wolfe com um método de geração de colunas para o modelo. Analisando os resultados obtidos pela metodologia empregada, verifica-se a obtenção de limites inferiores melhores do que a relaxação linear.
Diego Perdigão Martino, Alexandre Xavier Martins, Paganini Barcellos de Oliveira, and Matheus Araújo de Butinholi. 2019. “
GVNS for the Strong Network Orientation Problem”.
Publisher's VersionAbstract
The majority of urban centers are experiencing structural problems due to the contrast between the intensive vehicle flow and the lack of appropriated infrastructure to handle such a traffic demand. Reorienting the streets is a possible strategy to try to address these problems. The Strong Network Orientation Problem (SNOP) stands as an alternative to handle this situation in such a way the total travel distance in a network configuration is minimized. Since the problem involves large scale systems and is considered by the literature as NP-Hard, efficient heuristics algorithms are suitable to achieve appropriate solutions. This paper presents a General Variable Neighborhood Search (GVNS) algorithm for the SNOP composed by a systematic use of four neighborhoods structures and its appliance on instances found in the literature and real cases of a city. Its building steps including local search procedures provided by a Randomized Variable Neighborhood Search (RVND) algorithm and results are also presented and discussed. Results indicate that GVNS is an efficient metaheuristic to solve SNOP, both in running time and quality solution when compared with other heuristics approaches and the exact strategy from the optimization software CPLEX for this problem.
Dalila Rodrigues Baesso, Marco Antônio Bonelli Júnior, and Julio César Alvarenga. 2019. “
Linear programming and methods of multivariate regression applied to the prediction of the refractory campaign duration in a steel company.” In LI SBPO - Simpósio Brasileiro de Pesquisa Operacional, 2: Pp. 107721. Limeira, SP.
Publisher's VersionAbstract
When it comes to steel processes, it is known that refractory materials are responsible for a significant portion of the steel production costs. For this reason, this work aimed to understand the high variability and the low durability of the refractory campaign that compose a process of continuous casting in a large LD mill in the state of Minas Gerais , identifying the relationship between the process variables so it was possible to make estimates about the duration of its refractory campaign. For the selection of the explanatory factors, a variation of the method Stepwise was used. In each step of the algorithm, a model based on linear programming was responsible for the calculations of the linear regression coefficients. In the end, a prediction model was obtained for the duration of the campaign containing 12 explanatory factors and 97.66% of statistical significance.
Vanessa Silva Rosa, Paganini Barcellos de Oliveira, and Rafael Lucas Machado Pinto. 2019. “
Modelos de precificação para locação e venda de imóveis residenciais na cidade de João Monlevade-MG via regressão linear multivariada.” Revista GEPROS - Gestão da Produção, Operações e Sistemas, 14, 3.
Publisher's VersionAbstract
Consumers of goods and services in a particular market are attracted by a set of value attributes that directly or indirectly qualify them in relation to their competitors. On the other hand, although the “price” is only one among the various attributes, it is often interpreted as a response variable that gathers the others, precisely because of their relevance level to the consumers budget constraint. This paper proposes to evaluate the level of influence and correlation of a set of explanatory variables in the prices of residential properties offered for rent and sale in the city of João Monlevade-MG, using multivariate linear regression models. The methodology is based on real information regarding the prices offered in the city and its structural and locational characteristics, to quote: number of rooms and parking spaces; number of police occurrences; proximity to the center, health centers and schools more nearby. As a result, it was possible to obtain a set of mathematical equations able to explain the price according to the predictor variables, as well as to understand the relation between these variables.
Samuel Martins Drei and Thiago Augusto Oliveira de Silva. 2019. “
A multi-criteria Approach to the Problem of Managing the new Product Development Project Portfolio.” International Journal of Advanced Engineering Research and Science, 6, 8, Pp. 257-264.
Publisher's VersionAbstract
The management problem of the New Product Development Project Process (PDNP) is recurrent in the literature, as it reflects a question that exists in R&D companies, which is to decide which product project portfolio which will minimize the necessary development costs while maximizing the return for the organization. In this context, the present study aims to use two multi-criteria approaches - TOPSIS and PROMETHEE II - using the Analytic Hierarchy Process (AHP) method to establish, in a non-partial way, the weights and to determine which approach yields the best profit for NPDP, and raise the question of which approach is most appropriate for this problem. In addition, a practical example was proposed that shows the impact between the different orderings present in the work, to assist in achieving the goal. As a result, it was possible to obtain a study in which the non-compensatory approach is better for the practical example, making the present work the beginning of deeper studies on the subject.
Paulo Estevão Teixeira Martins, Wilingthon Guerra Zvietcovich, Thiago Augusto Oliveira de Silva, and Fernando Bernardes de Oliveira. 2019. “
Multi-objective Approach for Power Quality Monitor Allocation with Symmetry in Short-Duration Voltage Variations.” IEEE Transactions on Power Delivery, 34, 2, Pp. 430 - 437.
Publisher's VersionAbstractIn this paper, we present a new approach for solving the problem of power quality monitors (PQMs) optimal allocation, for the monitoring of short-duration voltage variations caused by a fault condition in a power grid system. The problem is treated in a multiobjective perspective with two optimal criteria: minimization of the number of PQMs and maximization of the number of identified faults. Non-identification of an event can occur as a result of symmetry conditions in the network, i.e., in cases where two or more faults generate the same signals in some buses, which leads to ambiguity in the monitoring results. Symmetry increases the complexity of both the problem formulation and solution. The problem is described as a multiobjective discrete optimization problem and is solved by the algorithm for bicriteria discrete optimization within reasonable computational time. That approach was tested in power grids of different characteristics and sizes. The results demonstrate the proposed methodology applicability for solving the problem in real-size networks.
Sérgio Evangelista Silva, Thiago Augusto Oliveira de Silva, and Naira Mota Araújo. 2019. “
The spatial competition from the perspective of competitive strategy.” In XXXIX ENEGEP - Encontro Nacional de Engenharia de Produção, Pp. 1-15. Santos, SP.
Publisher's VersionAbstract
Even though the spatial competition is a crucial aspect of the competitive strategy of firms, it is still little approached in the competitive and marketing strategy literature. As such, the association between formal spatial models and the practice of spatial competition between firms should be approached. Addressing this gap in this article, we propose a more formal view of the spatial competition. Based on the concepts of the value of displacement for the customer and the value of location we present several aspects related to the difference in the location of outlets in a hypothetical city. Several measures such as market share, competitive advantage, and value of location, are calculated in this model. This article opens a new perspective to study the competitive positioning of firms in spatial markets.
Samuel Martins Drei, Thiago Augusto Oliveira de Silva, Marco Antônio Bonelli Júnior, Luciana Paula Reis, and Matheus Correia Teixeira. 2019. “
A stochastic dynamic model for support of the management of new product development portfolios.” In Pesquisa Operacional e sua Atuação Multidisciplinar, 1st ed., Pp. 189-204. Ponta Grossa, Paraná: Atena Editora.
Publisher's VersionAbstract
New Product Development Processes are, in general, costly for organizations and since they need to coordinate the allocation of resources through several projects of the innovation funnel, the management of product portfolio aiming the the best-expected return is an important challenge. In this context, the present study aims to develop a mathematical model capable of considering, in an integrated manner, the uncertainties and the dynamicity in portfolio management. Also, we propose two heuristic policies and use the developed model as a framework for their comparison through simulation.
Marco Aurélio Horta Martins, Matheus Correia Teixeira, Thiago Augusto Oliveira de Silva, and Sérgio Evangelista Silva. 2019. “
Um modelo para análise de estratégias das montadoras atuantes na indústria brasileira de automóveis via teoria dos jogos.” In XXXIX ENEGEP - Encontro Nacional de Engenharia de Produção, Pp. 1-23. Santos, SP.
Publisher's VersionAbstract
O setor automotivo tem relevante participação na estrutura industrial nacional e dado aos seus encadeamentos pode influenciar na produção de vários outros setores. Diante disso e da competitividade acirrada entre os concorrentes, é de extrema necessidade que este setor busque por táticas para garantir sua presença no mercado e sobrevivência financeira. Assim sendo, o trabalho identificou o perfil estratégico de cada montadora por meio de inferência estatística, tendo por objetivo construir cenários de competição estratégica via Teoria dos Jogos para um mercado constituído de seis montadoras, que representam 85% do mercado de automóveis. O jogo foi modelado na categoria sedan segmentando modelos a uma faixa de preço de 75 a 100 mil reais com motores de 1.5 à 2.4, a fim de trabalhar com modelos que compitam de forma mais direta entre si.
Artur Alvarenga de Silva, Bruna Silva de Morais, Alexandre Xavier Martins, and Thiago Augusto Oliveira de Silva. 2019. “
Utilização de fluxo máximo para ordenação de requisição do problema de roteamento e alocação de comprimentos de onda.” In XIX SPOLM - Simposio de Pesquisa Operacional e Logística da Marinha, Pp. 1-12. Rio de Janeiro, RJ.
Publisher's VersionAbstractA ideia principal da pesquisa é a implementação do algoritmo de fluxo máximo para ordenação das requisições no problema de roteamento e alocação decomprimentos de onda Routing and Wavelength Assignment (RWA) . Na literaturao problema consiste em atender as demandas definidas na topologia virtual, sendopossível destacar duas abordagens. A primeira variante é o MIN-RWA, no qual o objetivo geral é atender as requisições com o menor número de comprimentos deonda e a outra variação é o MAX-RWA, no qual tem a finalidade de maximizar o número de requisiçõe atendidas com um número fixo de comprimentos de ondas. Neste estudo será considerado o MIN-RWA.
Matheus Araújo de Butinholi, Alexandre Xavier Martins, Paganini Barcellos de Oliveira, and Diego Perdigão Martino. 2019. “
VNS for the Uncapacitated Single Allocation p-Hub Maximal Covering Problem”.
Publisher's VersionAbstract
This paper addresses the Uncapacitated Single Allocation p-hub Maximal Covering Problem (USApHMCP), which aims to determine the best allocation for the p-hubs within a node network in order to maximize the network coverage. We proposed a search strategy-based heuristic VNS (Variable Neighborhood Search [7]) to solve the problem. Two different sets of literature test instances, Civil Aeronautics Board (CAB) and Australian Post (AP), were used to evaluate the performance of VNS and compare it to the Tabu Search metaheuristic (TS) proposed by [11]. As a result, the VNS presented equal or slightly smaller bounds for large-scale AP instances, as well as a similar behavior was shown regarding the quality of the solutions for CAB instances. In addition, it was observed that VNS performs better than the TS algorithm in CPU running times for both CAB and AP instances.
Bianca Fialho Silva, Vera Lúcia Santos Castro, Thiago Augusto Oliveira de Silva, and Sérgio Evangelista Silva. 2019. “
Apresentação de um modelo de jogos para seleção do portfólio de produtos na indústria brasileira de caminhões.” In XIX SPOLM - Simpósio de Pesquisa Operacional e Logística da Marinha, Pp. 1-12. Rio de Janeiro, RJ.
Publisher's VersionAbstractO mercado brasileiro de caminhões é um mercado dinâmico e oligopolizado e, portanto, o desenvolvimento de ações estratégicas se faz necessário para que a empresa se estabeleça com melhor posição no mercado. Consequentemente, torna-se significativo entender melhor estrutura do mercado a partir das necessidades dos consumidores. Nesse contexto, este estudo objetiva retratar a competição existente no mercado de caminhões por meio da composição de um modelo baseado em Teoriados Jogos, além de analisar o comportamento estratégico de duas montadoras decaminhões de acordo com as categorias de produto. Como resultado, obteve-se ummodelo de jogo mais completo do que outros artigos presentes na literatura e que se demonstrou consistente frente às suposições estabelecidas.
Thiago Augusto Oliveira de Silva and Mauricio C. de Souza. 2019. “
Surgical scheduling under uncertainty by approximate dynamic programming.” Omega, 95, Pp. 102066.
Publisher's VersionAbstractSurgical scheduling consists of selecting surgeries to be performed within a day, while jointly assigning operating rooms, starting times and the required resources. Patients can be elective or emergency/urgent. The scheduling of surgeries in an operating theatre with common resources to emergency or urgent and elective cases is highly subject to uncertainties not only on the duration of an intervention but mainly on the arrival of emergency or urgent cases. At the beginning of the day we are given a candidate set of elective surgeries with and an expected duration and a time window the surgery must start, but the expected duration and the time window of an emergency or urgent case become known when the surgery arrives. The day is divided into decision stages. Due to the dynamic nature of the problem, at the beginning of each stage the planner can make decisions taking into account the new information available. Decisions can be to schedule arriving surgeries, and to reschedule or cancel surgeries not started yet. The objective is to minimize the total expected cost composed of terms related to refusing arriving surgeries, to canceling scheduled surgeries, and to starting surgeries out of their time window. We address the problem with an approximate dynamic programming approach embedding an integer programming formulation to support decision making. We propose a dynamic model and an approximate policy iteration algorithm making use of basis functions to capture the impact of decisions to the future stages. Computational experiments have shown with statistical significance that the proposed algorithm outperforms a lookahead reoptimization approach.