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1. Introduction

Since 2013, the value of mineral production in the coun-
try has been falling due to the contraction of the price of ore
in the global market, and as a result, good initial planning be-
comes increasingly crucial to the life of an open-pit mine when
treated within the scope of its economic viability. In this sense,
the present study aims to present a model for the problem of
open-pit mine scheduling, considering its dynamic and stochas-
tic aspects, in order to generate a framework that will serve as
the basis for the evaluation, through simulation, of different solu-
tion policies. The proposed solution considers the uncertainties
of the problem regarding the mineral price and geological un-
certainty aspects and, in order to demonstrate the application
of the proposed method, a demonstrative problem is presented
and solved through a myopic solution policy.

2. Mathematical Modeling and Description

For mathematical modeling purposes, we will represent an
open pit as a set of B ore blocks arranged in R3. Each i ∈ B
element has associated a set Bi ⊆ B of blocks that need to be
extracted before i so that the latter becomes available. Thus,
Bi represents the set of precedents of i ∈ B. In order to de-
compose the problem, the blocks are aggregated into partitions
r ∈ R, that is,

⋃
r∈RBr = B, with Br1 ∩ Br2 = ∅, ∀(r1, r2) ∈ R

and r1 6= r2. The size reduction through block aggregation aims
to limit the load of the problem to the available blocks for extrac-
tion, called Rd, concept that will be defined later.

Each block has a cost of extraction ci and a sterile/ore ratio
ei unknown until the time of extraction. The combination of ci, ei
and the price of ore in market p, determines the value of block vi
at the time of extraction. During the planning stage, the values
vi and ei are estimated by v̂i and êi, respectively.

The objective of the problem is to sequence the extraction
of the blocks i ∈ B in order to maximize the net present value
of the activity. For this purpose, capacity constraints, minimum
extracted value and extraction precedence are considered for
each decision period, that is, for each moment in which one has
the possibility to redo the extraction plan.

2.1 System state and decision stage
In the present work, the state of the system in stage n will be

represented as S(n) and will contain the following parameters:

• Available aggregate blocks: R(n)
d represents the aggregate

blocks available for exploration in the decision stage n;

• Blocks with possibility of exploration: the sets B(n) and
B(n)
r ,∀r ∈ R(n)

d are the blocks that can be mined in the de-
cision stage n;

• Estimation of the sterile/ore ratio: the parameter ê(n)
i reports

the sterile/ore estimate of the block i in the n stage of deci-
sion;
• Value of the ore in the market: the parameter p(n) refers to

the value of the ore in the decision stage n;
• Benefit obtained with the extraction of the blocks: the param-

eter v̂(n)
i expresses the value of the extraction of the block i

in the decision stage n, given its relation of the sterile/ore ê(n)
i

and the price p(n) of the current ore in the market.

Thus, the state of the system in stage n is represented by
the Expression 1:

S(n) = (R(n)
d ,B(n) =

⋃
r∈R(n)

d

B(n)
r , v

(n)
i , e

(n)
i , p(n)) (1)

2.2 Uncertainties
The return generated with the extraction of geological blocks

in an open-pit mine process has uncertain characteristics since
its value is dependent on information regarding the price of the
ore in stage n and the ratio of sterile/ore of the block, which
is known with precision only at the moment of extraction. This
information is considered exogenous to the ore extraction pro-
cess.

w(n+1) = (p̄(n+1), ē
(n)
i ∀i ∈ B(n)

z ) (2)

2.3 Decision
For each block i ∈ B(n) possible to be extracted at the cur-

rent decision stage, a binary variable x(n)
i is associated indicat-

ing that this block was mined in n. Once extracted, the block
immediately generates a value v̄i, now known, referring to the
gain from its mining.

Being that u(n) is a feasible decision for the S(n) state in
the stage n, the return at the end of the stage coming from the
application of u(n) is given by Expression 3.

Gn(S(n), u(n)) =
∑

i∈B(n)d

vi ∗ xi (3)

Since U (n) is the feasibility set for the decisions in the stage
n, Ω = {ω1, ..., ω|K|} is the uncertainty path and λ a discount fac-
tor used to penalize future earnings, the objective of the problem
modeled in this study can be represented by the Expression 4.

Obj : max
u(n)∈U (n)

{
EΩ

[∑
n∈K

λnGn(S(n), u(n))

]}
(4)

At each stage, the feasibility region of solutions U (n) is de-
fined by the set of inequalities (5 - 11).

x
(n)
i ≤ y(n)

r , ∀r ∈ R(n)
d ,∀i ∈ B(n)

r (5)

The constraint 5 informs that for a block to be extracted, the
exploration of its aggregate block must be enabled. The binary
variable y(n)

r ,∀r ∈ R(n)
d indicates the activation of the aggregate

block r.

x
(n)
i ≤ x

(n)
j , ∀i ∈ B(n)

r ,∀j ∈ P (n)
i (6)

∑
i∈B(n)

d

aikx
(n)
i ≤ C+

k , ∀k ∈ K (7)

∑
i∈B(n)

d

aikx
(n)
i ≥ C−k , ∀k ∈ K (8)

The constraint 6 ensures that the precedence relation be-
tween blocks is preserved. Since aik is the resource require-
ment of k ∈ K for the mining of the i block, the inequalities 7
and 8 the upper and lower limits of the use of each type of re-
source.

In order to reduce the risks of generating periods with neg-
ative gains, there should be constraints controlling the aspects
related to tapering the mine at the time of extraction. The con-
straints 9 and 10 guarantee the precedence relation between
the blocks aggregated to the point that an aggregate block must
be exploited in its entirety before a next aggregate block is ex-
ploited and additionally minimize the incidence as the blocks
are aggregated considering the coverage of negative extraction
values (see Section 3.1), being that Mr represents the binary
decision variable of which constraint should be used.

∑
r∈R(n)

d

y(n)
r ≤ 1 +

∑
r∈R(n)

d

Mr (9)

Mr ≤

∑
i∈B(n)r

x
(n)
i

| B(n)
r |

, ∀r ∈ R(n)
d (10)

Finally, the equations in 11 inform the domains of the vari-
ables.

x
(n)
i ∈ {0, 1} ∀i ∈ B

(n)
r , y(n)

r ∈ {0, 1} ∀r ∈ R
(n)
d , Mr ∈ {0, 1} ∀r ∈ R(n)

d (11)

Since the decision is defined by a policy π(·), i.e., u(n) =

π(S(n)), where S(n) is a possible state to occur under π(), Ω is
the set of all possible uncertainty sequences for the system and
S(n+1) is a state is possible to occur from the transition gener-
ated by S, u and ω, the Expression 12 represents the Bellman
Equation for the π policy and derives the value V π,(n) to be in
S(n).

V π,(n)(S(n)) = G(S(n), π(S(n))) + λEω{V π,(n+1)(S(n+1))|S(n), π(S(n))} (12)

In this way, the objective of the problem is to find the optimal
policy π∗ = (π1, ..., π(|K|)) from a set of policies Π that maximizes
the value of being in the initial state S(0) in stage 0, according to
the Expression 13.

π∗ = arg max
π∈Π

V π,(0)(S(0)) (13)

2.4 Transition
The transition function fT (S, u, w) determines how the sys-

tem evolves along the decision stages and, thus, it determines
the dynamic of the process. Since S(n) is the present state, its
configuration depends on the state of the system in the previ-
ous stage S(n−1), of the decision u(n−1) in the previous stage
and also the influence of the uncertainty w(n) occurred in the
current stage.

In this way, the dynamics described by Equation 14 repre-
sents the evolution of the system after the application of the
control u(n) in stage n to a next state, existing in the stage n+ 1.
In the Expression 14, f (S(n), u(n), w(n+1)) represents a recursive
function for the state in period n+ 1, based on past information.

S(t+1) = f (S(t), u(t), ω(t+1)) (14)

3. Application Example

In order to provide a better understanding of the proposed
model, this section presents an application example that aims
to demonstrate the dynamics of the decision throughout the
stages.

3.1 Aggregation of blocks
This section seeks to present the way in which the blocks

are aggregated, in order to reduce the size of the problem.
In this paper, a simplification of the algorithm proposed by

Ramazan [2007] is used. The author proposed a technique of
resolution called Fundamental Tree Algorithm that performs the
aggregation of blocks into larger blocks, dividing the problem
tree into several smaller trees, in which the aggregation is car-
ried out as a linear programming problem.

3.2 Production Scheduling
This sections demonstrates the decision-making process

concerning the actions regarding the selection of the aggregate
blocks to be explored in the current stage using a myopic policy
and, after this event, the selection of the blocks to be extracted
and the transition dynamics for the next period.

Figure 1: Application Example

4. Results and discussions

In this study, a mathematical model for the resolution of the
open-pit mine scheduling problem was presented. The con-
tribution of this model is justified by the consideration of the
stochastic and dynamic aspects of the problem acknowledging
the value of the ore and the concentrations of the estimated ster-
ile/ore ratio at the initial moment of extraction. A secondary con-
tribution of the present study consists of the proposed formula-
tion considering aggregation block evaluation methods, which
seek to enable large-scale applications in severe cases. Still, a
framework to evaluate via simulation different policies was con-
structed, making possible the evaluation of different exploration
policies.

For future studies, it is made necessary the development
of solution techniques for the proposed model and, posteriorly,
your evaluation with other already applied techniques, as (e.g.
Jélvez et al. [2016]; Ramazan [2007]). Together, it is suggested
the experimentation of modeling referring to the uncertainties
of the problem with methods present in literature (e.g. Dimi-
trakopoulos et al. [2002]; Chatterjee et al. [2016]). Finally, im-
provements for the aggregation model become relevant for bet-
ter behavior of the proposed model.
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